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Abstract. The  formula for the correlation length in a system described by a stochastic 
reaction-diffusion equation I I to)  has been derived on  the basis of the small-noise expansion 
method. The method has been applied to study spatial correlation of isothermal chemical 
explosion processes in the presence of small non-homogeneous fluctuations of external 
control parameters. A good agreement with the results of computer simulations of one- 
dimensional systems with quadratic dynamics has been obtained. 

Stochastic reaction-diffusion equations (Gardiner 1983) can be used to describe the 
behaviour of systems with chemical reactions when the external control parameters 
such as pressure or temperature are fluctuating. In this paper we present a simple 
method based on the small-noise expansion which allows us to study the time evolution 
of spatial correlations in such systems. The technique discussed below may be applied, 
for example, to describe a chemical explosion in a well stirred system, where small 
local fluctuations of control parameters can be regarded as a perturbation. 

For simplicity let us consider a single-component system. Its state at time t is 
defined if we know the concentration of chemical substance at any point of space 2 
p(2, t ) .  Let us assume that the time evolution of p(2, t )  is described by the Ito stochastic 
differential equation ( S D E ) :  

(1) 
where F ( p )  is a function of concentration which represents the production of X by 
local processes, D is a diffusion coefficient and G(p) is a function of the local density 
which relates the local fluctuations with the rate of reaction. [(f, t )  is local white noise 
with the usual properties: 

d p  = F(p) d t +  DC'p d t +  y' 'G(p)[(f, t )  d t  

(5(2, 1 ) )  = 0 ( t ( X .  r)c(y, s ) ) = 6 ( 2 - , ; ) 8 ( r - s ) .  

The parameter y describes the strength of noise and in the following we will assume 
that it is small enough to justify the small-noise expansion (Gardiner 1983). 

If the initial state is homogeneous then it becomes non-homogeneous because of 
non-homogeneous noise in the system. For the case of an homogeneous initial state, 
the solution p(2, t )  may be expanded in the powers of y"' in the following way: 

p ( 2 , t ) = p o , ( t ) + y '  ' g ( . r , r )+yh(x , r )+  . . .  ( 2 )  
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where cpo does not depend on f. The actual meaning and validity of such an  expansion 
is not trivial. A general discussion of this problem can be found in Gardiner’s book 
(1983). The small noise expansion seems to be sensible only for special functionals 
F and initial states cp:; however, the range of its validity is, as far as we know, yet 
unanswered. It can be shown (de  Pasquale et a1 1986) that the small noise expansion 
gives an unphysical long-time behaviour when the system is initially in an unstable 
state, because small fluctuations are amplified in time and the method is divergent. In 
the following we discuss this example and  our method fails to predict the correlation 
length for long times (equation (11) and following text). On the other hand the 
small-noise expansion seems to be justified when the dynamics F and the initial state 
cp: ensure the convergence to the stable state. Having in mind the limitations of the 
method we can write the approximation (2) of the solution cp which takes into account 
the terms up  to the first order in y. 

Substituting (2) into (1) we obtain 

dqo=  F ( q o )  d t  ( 3 a )  

and  similarly equations corresponding to the higher terms in (2) may be obtained (see, 
e.g., Gardiner (1983) equation (6.2.6)). We note that equation ( 3 a )  does not involve 
any stochastic term; it is deterministic and may be directly integrated. The correlation 
function in stochastic systems is defined as (Gardiner 1983): 

S(f, Y,  1 )  = (cp(f ,  t)cp(j, t)?-(cp(f, f )?(cp(Y,  t ) )  

S(f, Y ,  t )  = y(g(f,  t)g(Y, 1)) 

(4) 

( 5 )  

because terms containing the function h cancel in (4). The function g can be easily 
calculated in momentum space. Calculating the Fourier transform of both sides of 
(3b)  we obtain 

and if we consider terms up  to the order of y then it becomes 

and the Fourier components of the noise [(X, t )  satisfy: ( ( ( p ,  r ) [ ( q ,  s))= 
6 ( q + p ) 6 ( t  -s) .  The equation (6) is a linear Ito SDE and it may be directly integrated 
(Gardiner (1983) equation (4.4.69)). A straightforward calculation gives the following 
expression for the correlation function: 

d p d q ( g ( p ,  t )g(q ,  t))e:xp[-i(pT+q).)] 

where d denotes the dimension of space where the reaction occurs; f E Rd. S(f,  j ,  r )  
describes the average correlations between the local concentration of X in different 
points of a system. The global characteristic of the range of correlations is described 
by the correlation length l ( t ) ,  which is defined as: 
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Substituting S(f, j ,  t )  from ( 7 )  into (8 )  we obtain 

Therefore the small-noise expansion leads to a general formula for correlation length, 
which expresses it as a function of the deterministic solution cpo(s), the deterministic 
dynamics F and the character of the noise G. It is worthwhile noting that the correlation 
length does not depend on the strength of the noise y ,  which is a consequence of 
taking into account only the lowest-order term in the small-noise expansion. 

The assumption that there is one-to-one correspondence between the time and the 
homogeneous concentration cpo has been used to derive formula (9). However, when 
our initial state is a stationary one, i.e. F(cpo) = 0, this assumption is not valid. In this 
case both functions cpo and G(cpo( t ) )  in equation (6) are constant and an elementary 
calculation shows that 

where a = (dF/dcp)l,=,, and  p = G(cp,). Then the correlation length is given by the 
formula 

It may be noticed that formula (1 1 i is identical with the result obtained for the early 
stage relaxation of the one-dimensional time-dependent Ginzburg-Landau (TDGL) 

model by de  Pasquale er a1 (1985). The unlimited linear growth of the correlation 
length for a>O when t + q  given by (11) is, however, unphysical. In this case the 
initial state is an unstable stationary state and the small-noise expansion fails, being 
divergent for long times. 

Now let us apply formula (9) to the case of a stochastic reaction-diffusion equation 
with multiplicative noise, G ( q )  = cp. Such equations have been used to model the 
stochastic behaviour of an explosive reaction (Chandler and Deutch 1983). 

In the simplest case the dynamics F is a linear function of cp 

F(cp)=a+bcp. (12) 

When the homogeneous initial state is cp(x, t = 0) = cp: then formula (1 1) gives: 

t' 2a ( l -b t - e - " ' )  - o2(1-2bt-e-"') 
2 (bcp:+a)b' 46 ' (bcp :+~)~  

It is easy to see that for short times the increase of correlation length is proportional 
to the square root of time 

P ( t )  = 2 d ~ t  (14) 
and is exactly the same rate of growth as it is for SDE with the additive noise (equation 
(11)). The long-time behaviour depends on the sign of b. When b > 0 (explosive 
behaviour) then a long-time behaviour of correlation length is also given by formula 
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(14). For b < 0 the correlation length approaches a constant value l', = -2dD/  b when 
t + M. It follows from (13) that when (b/a)cp:+ 1 > 0 then 1 2 (  t )  grows monotonically, 
whereas for (b/a)cp:+ 1 < O  i t  has a maximum and then decreases to its stable value. 
The behaviour of correlation length for the system with linear dynamics as a function 
of time is shown in figure 1. 

A non-linear dynamics is usually more appropriate for modelling the transition 
from an  unstable to a stable state. For example, it allows us to take recombination 
into account in a chemical reaction. Let us consider the quadratic dynamics: 

F(p)=a+bcp-ccp' .  (15) 

The deterministic solution cpo( t )  is 

where f = ( b2 - 4ac)"'. The correlation length is then obtained by a direct integration 
from (9). The results for a few values of parameters are presented in figure 2 .  In this 
case, as for that of linear dynamics, the local maximum of correlation length may be 
also observed. 

The appearance of a local maximum of the correlation length represents a qualita- 
tively new effect connected with transient behaviour. It has been observed in recent 
studies on kinetics of phase transitions (Mazenko and Zanetti 1984, de  Pasquale and 
Tartaglia 1986). 

Computer simulations of a system with dynamics (15) have been performed to test 
the accuracy of the model based on the small-noise expansion. A one-dimensional 
array of 31 points with periodic boundary conditions has been considered with the 

1 :  
0 2 4 6 8 10 

T i m e  

Figure 1. The correlation length as a function of time for the case of linear dynamics 
plotted as  equation ( 1 3 )  with a = 1 ,  q: =4, d = 1, D = 10 and  various values of b. 
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Figure 2. The correlation length as  a function of time for the case of quadratic dynamics 
plotted as  equation (16) with a = 1, c = 0.2,  pg = 4, d = 1, D = 10 and  various values of b. 

evolution given by the equation 

We have used a simplified version of the numerical algorithm developed by Rao et a1 
(1974) taking account of terms up  to the order of the elementary time interval. A 
similar first-order algorithm was applied to a Stratonovich SDE with multiplicative 
noise by Sancho et a1 (1982). Simulation of 9000 systems has been carried out 
simultaneously. A small size of system (only 3 1 points) is preferable from the numerical 
point of view. For distance points the correlation function is close to zero; however, 
its fluctuations can have a big influence on the correlation length because they are 
multiplied by the square of distance (equation (8) ) .  Therefore a reliable result for the 
correlation length may be extracted from the simulation data if the correlation function 
is known with high accuracy. This can be achieved when a large ensemble is considered, 
or  when the maximal distance is small thus reducing the contribution of distant points 
to l ( t ) ,  or finally when a cutoff in the integral in the numerator of (8) is introduced. 
For the system we used, the ensemble was large enough to give the correlation length 
without such an artificial cutoff. The simulations have been done for a few values of 
parameters a,  b, c and y. In general there is a good agreement between the correlation 
length given by formula (9) and that obtained from the average over the ensemble. 
Typical results are presented in figure 3. It may be noticed that for the range of 
parameters used in simulations the strength of noise has no significant influence on 
the correlation length, as is predicted by the small-noise expansion. 

As a final comment we would like to say that the small-noise expansion proved to 
be a promising approach to the problem of correlation range in stochastic systems. 
The simple analytic approach predicts an anomalous behaviour of the correlation 
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Figure3. The correlation length in  a one-dimensional stochastic system, comparing equation 
( 9 )  (curve)  with a computer simulation (circles) using parameters a = 1. b = -5, c = 0.2, 
q g = 4 ,  D=20 and  ( a )  y = 2 . 0 ,  i b )  y=0 .2 .  

length, which is confirmed by numerical simulation. It would be interesting to see if  
the transient maximum of correlation range is observed in experiments. 
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